字体:大 中 小
护眼
关灯
上一页
目录
下一页
数学建模 (第11/17页)
位必须控制在两分钟之内的要求。设计算法的目标就是求解出在满足D1情况下,总的警车数目最小,即每个区域都尽可能多地覆盖道路节点。由于警车的初始位置是未知的,我们可设警车初始停靠点在道路上的任一点,即分布在图4所示的762个离散点中的某些点节点上,总体思路是让每两辆车之间尽量分散地分布,一辆警车管辖一个分区,用这些分区覆盖整个区域。 于是我们设计算法1,步骤如下所示: Step1:将整个区域预分配为个分区,每个分区分配一辆警车,警车的初始停靠位置设在预分配区中心的道路节点上,假设区域的中心不在道路节点上,那么将警车放在离中心最近的道路节点上; Step2:统计分区不能覆盖的节点,调整警车的初始停靠点,使分区覆盖尽可能多的道路节点,调整分为区内调整和区间调整方案:〔1〕区内调整按照模拟退火思想构造的函数,在区间调整调整车辆初始点的位置〔后文中有详细说明〕,当分区内节点数较多时,调整的概率小些,分区内节点数较少时,调整的概率大些,〔2〕当区域中存在未被覆盖的节点或节点群〔大于等于叁个节点集中在一个范围内〕时,将警车初始位置的调整方向为朝着这些未被覆盖的节点按一定的规那么〔在 对算法的几点说明: 〔1〕该算法所取的车辆数是由多到少进行计算的,初始值设为20,这个值的选取是根据区域图估算的。 (2)预分区的优点在于使警车的初始位置尽可能均匀地分散分布,警车的初始停靠点在一个分区的中心点附近寻找得到,比起在整个区域随机生成停靠点,计算效率明显得到提高。 预分配之后
上一页
目录
下一页